Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/966 -
Telegram Group & Telegram Channel
Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/966
Create:
Last Update:

Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/966

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA